Cartographic Design Issues Utilizing Google Earth for Spatial Communication

Department of Geography and Regional Research

Karel Kriz

University Vienna, Austria
Cartography

- “A picture [map] is worth a thousand words”
- Cartography is like music (E. Imhof)
 - Single notes with specific attributes connected to them.
 - These resemble the fundamentals of cartographic depiction – the graphic variables.
 - Each note is aligned and combined in such a way that the arrangement can harmonize to produce pleasing music or disharmony.
Cognitive (over)load in Cartography
Map

... can be seen as a metaphor for all products that are produced within cartography.

... is a structured model of spatial relationships that has the goal to transport information to the user in order to gain extensive insight.
Scientific Foundation of Cartography

Cartographic Representation as

Concrete Product

- Natural Science and Mathematics
 - Geo-Science, Physics, Chemistry, Informatics
- Engineering
 - Surveying, Graphical Techniques
- Methods and Tools, Capturing, Manipulation, Depiction, Storage, Management

Abstract Sign Language

- Humanities
- Sign Structure, Sign Interpretation, Modeling, Generalization

Cognition-Perception-Analysis
Cartographic Communication
Cognitive (over)load

- Cognitive Load
 - refers to the load on working memory during problem solving, thinking and reasoning
- Magical Number Seven plus or minus Two
 - Retention of discrete units of information before information loss occurs
- Chunks and Chunking
 - Structures that can be used as units of perception and meaning
 - Strategy for efficient use of Chunks
Topographic Orientation
- Every map has at least one layer that contains information for orientation.
- This topographic-orientation layer serves as a base for locating the thematic information in a spatial context.

Thematic Information
- It can vary from a very simple depiction all the way to a multi-dimensional complex base map.
- Objects can be grouped together to create “chunks” that help structure and organize the overall cartographic representation.
Google Earth Projects UNI-Vienna

- Global Awareness in School
 - “Understanding the World with Maps”
- Decision Support System Tool
 - “Avalanche Information System in Tyrol”
- Optimizing Topographic Maps
 - “Skitour Information System”
Small Scale Geo-Communication

- Global Awareness in School
 - “Understanding the World with Maps”

- Educational goals
 - **Affirmative Domain:** assist topographic navigational knowledge
 - **Cognitive Domain:** spatial navigational perception, combine knowledge with content
 - **Instrumental Domain:** topographic capabilities and skills for independent action
Global Land Cover 2000

GLC 2000 is a global vegetation and land cover map based on Envisat satellite data by ESA. More information on ongoing Envisat world mapping projects can be found [here](#).

This overlay provides 20 km resolution, but the full map has 1 km resolution. An interactive applet is available [here](#).
Intermediate Scale Geo-Communication

- Decision Support System Tool
 - “Avalanche Information System in Tyrol”

- Project Goals
 - Prevention of avalanche accidents by informing the public about the current snow and avalanche situation
 - Administration and management of data
 - Cartographic visualization
LWD Interaktiv - Stationenübersicht

Anzahl der Stationen = 209

Markierte Stationen werden als aktiv in die Datenbank geschrieben - rot = nicht aktiv - grau = kein Sensor vorhanden

Alle Wetterstation (KML)

<table>
<thead>
<tr>
<th>Num</th>
<th>ID</th>
<th>Stationsname</th>
<th>geol</th>
<th>geob</th>
<th>Höhe</th>
<th>Temp</th>
<th>Schnee</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>490000169390</td>
<td>---/Höllgraben</td>
<td>47.611</td>
<td>13.064</td>
<td>660</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4986991032</td>
<td>---/Hörmooos</td>
<td>47.482</td>
<td>10.056</td>
<td>1280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>490000928107</td>
<td>---/Karwendel-Markklamm</td>
<td>47.412</td>
<td>11.279</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>430777711328</td>
<td>Achenkirch/Achenkirch (ZAMG)</td>
<td>47.533</td>
<td>11.683</td>
<td>904</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>430015122003</td>
<td>Alpbach/Kleiner Beil</td>
<td>47.356</td>
<td>12.018</td>
<td>1920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>430715122003</td>
<td>Alpbach/Saupanzen</td>
<td>47.366</td>
<td>12.007</td>
<td>1957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>430700009990</td>
<td>Alpein/Alpein (TIWAG)</td>
<td>47.090</td>
<td>11.178</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>430709035101</td>
<td>Amlach/Beobachter Dolomitenhütte</td>
<td>46.790</td>
<td>12.784</td>
<td>1616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>430700069901</td>
<td>Bach/Jöchlspitze_Gipfelstation</td>
<td>47.282</td>
<td>10.359</td>
<td>1740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>430700069013</td>
<td>Bach/Jöchlspitze_Liftstation</td>
<td>47.273</td>
<td>10.365</td>
<td>1740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>430700069011</td>
<td>Bach/Jöchlspitze_Schneeestation</td>
<td>47.273</td>
<td>10.367</td>
<td>1680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>49000069390</td>
<td>Berchtesgaden/Jenner-Schneeestation</td>
<td>47.586</td>
<td>13.019</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>490082000437</td>
<td>Berchtesgaden/Plateau-Schneeestation</td>
<td>47.649</td>
<td>12.809</td>
<td>1670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>490082000437</td>
<td>Berchtesgaden/Wartsteinhütte-Schneeestation</td>
<td>47.647</td>
<td>12.811</td>
<td>1615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>490082000437</td>
<td>Berchtesgaden/Wartsteinkopf-Windstation</td>
<td>47.653</td>
<td>12.805</td>
<td>1755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>430700053181</td>
<td>Brandberg/Plattkopf</td>
<td>47.127</td>
<td>12.066</td>
<td>2220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>49000020432</td>
<td>Brauneck/Brauneck_Schneeestation</td>
<td>47.664</td>
<td>11.529</td>
<td>1485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>49000020431</td>
<td>Brauneck/Brauneck_Windstation</td>
<td>47.642</td>
<td>11.523</td>
<td>1550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>430702481502</td>
<td>Eben/Dalfazkamm</td>
<td>47.451</td>
<td>11.753</td>
<td>2140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>430700000041</td>
<td>Eben/Dürachsporre (TIWAG)</td>
<td>47.504</td>
<td>11.586</td>
<td>950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>430702481501</td>
<td>Eben/Erfurterhütte</td>
<td>47.442</td>
<td>11.763</td>
<td>1824</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>430700053172</td>
<td>Finkenberg/Kesselbach</td>
<td>47.032</td>
<td>11.697</td>
<td>1860</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>430700053317</td>
<td>Finkenberg/Schlegeis</td>
<td>47.032</td>
<td>11.697</td>
<td>1795</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Large Scale Geo-Communication

- Optimizing Topographic Maps
 - “Skitour Information System”

- Project Goals
 - Focused information retrieval
 - Optimization of large-scale topographic maps for integration in GE
 - Automatic derivation and design processing
Skitouren Wiener Hausberge

Um mit google earth Dateien zu arbeiten, ist das Programm [google earth](#) am Rechner zu installieren.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Skitour</th>
<th>Höhenmeter</th>
<th>Länge</th>
<th>Dauer</th>
<th>beste Zeit</th>
<th>Fotos</th>
<th>Karten</th>
<th>Google Earth</th>
<th>Tracks</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Krummbachstein</td>
<td>1.060 Hm</td>
<td>5,5 km</td>
<td>4,5 h</td>
<td>Hochwinter</td>
<td>📷</td>
<td>🚀</td>
<td>🌐</td>
<td>🚀</td>
<td>🌐</td>
</tr>
<tr>
<td>2</td>
<td>Hoher Hengst</td>
<td>830 Hm</td>
<td>4,0 km</td>
<td>2,5 h</td>
<td>Frühjahr</td>
<td>📷</td>
<td>🚀</td>
<td>🌐</td>
<td>🚀</td>
<td>🌐</td>
</tr>
</tbody>
</table>

[Disclaimer](#)

Fotoalbum Krummbachstein

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Impressionen</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Ausgangspunkt Rohrbachgraben</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Aufstieg - knapp vorm Gipfel Krummbachstein</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Abfahrt durch lichten Wald</td>
</tr>
</tbody>
</table>
Goals and Outlook

- Enhancing methods of spatial information by means of cartographic communication
- Know-how transfer and collaboration with neighboring disciplines
- Application development and implementation
- Sustainable scientific progress within cartographic visualization and geo-communication
Cartographic Design Issues Utilizing Google Earth for Spatial Communication

Department of Geography and Regional Research

Karel Kriz

University Vienna, Austria